

Mebinar

Radiated Immunity test in reverberation chamber

Presenter: Maxime BLIN Support BAT-EMC

Rules

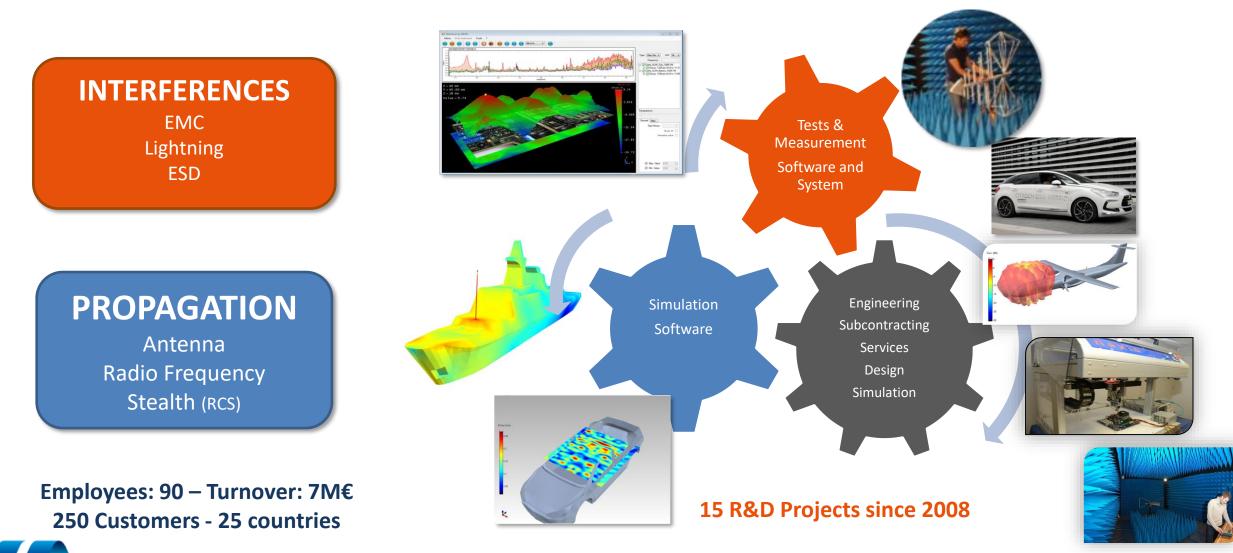
- Presentation/questions
- Webcam & micro switched off
- Use Chat for questions during presentation
- My colleagues can answer or ask me to answer

Webinar Agenda

≻40 Min Webinar presentation

► 15 Min for questions

Overview

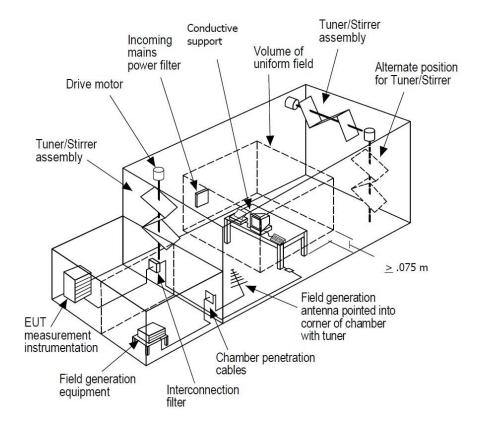


- 1. NEXIO presentation
- 2. Introduction on reverberation chamber
- 3. Standard introduction
- 4. Calibrations
 - 1. Empty
 - 2. Loaded
 - 3. On EUT
- 5. Immunity Test
 - 1. Automatic
 - 2. Manual
 - 3. Export and Report

1. Since 2003: Electromagnetism is our thing I Company Company

Toulouse – Paris – Grenoble – Austin – Munich

2. Reverberation chamber



The reverberation chamber has been used in Electromagnetic Compatibility test for more than 20 years.

The reverb chamber is a an electrically large highly conductive cavity with a mechanism for altering its modes.

When the chamber is excited with RF energy, the resulting multi-mode electromagnetic environment can be "stirred" by the mechanical tuner/stirrer. The resulting field is statistically uniform, statistically isotropic (i.e., the energy having arrived from all aspect angles) and statistically randomly polarized (i.e., with all possible directions of polarization) when averaged over enough positions of the tuner/stirrer.

Warning a reverb chamber has a minimum frequency usage.

2. Reverberation Advantages and disadvantages

Advantages

Disadvantages

EUT in the uniform field zone:

- Immunity on EUT on all direction and on cables.
- Test closer to reality

No absorbent :

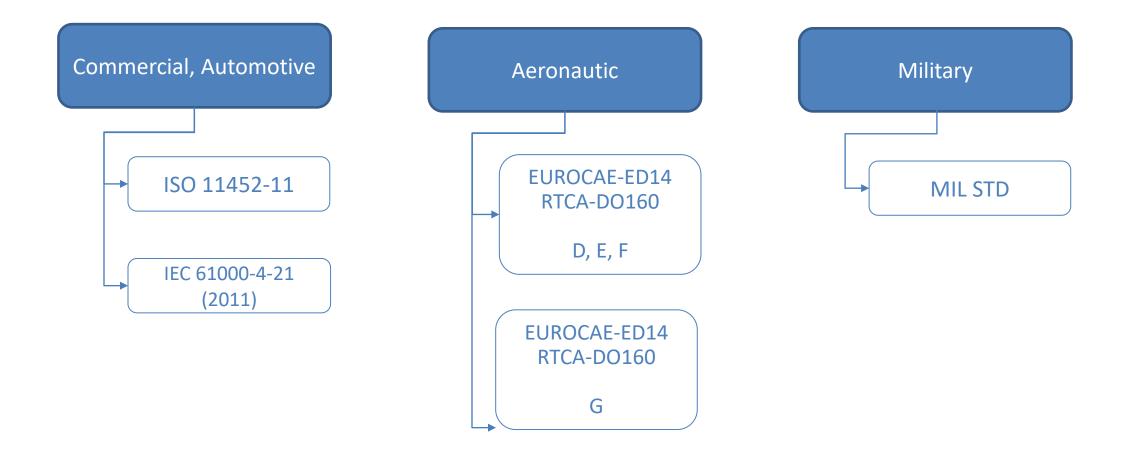
- Lower installation cost.
- Possibility to generate higher E field.

Very good ration Field / Power:

- Amplifiers less expensive or higher field than in anechoide chamber

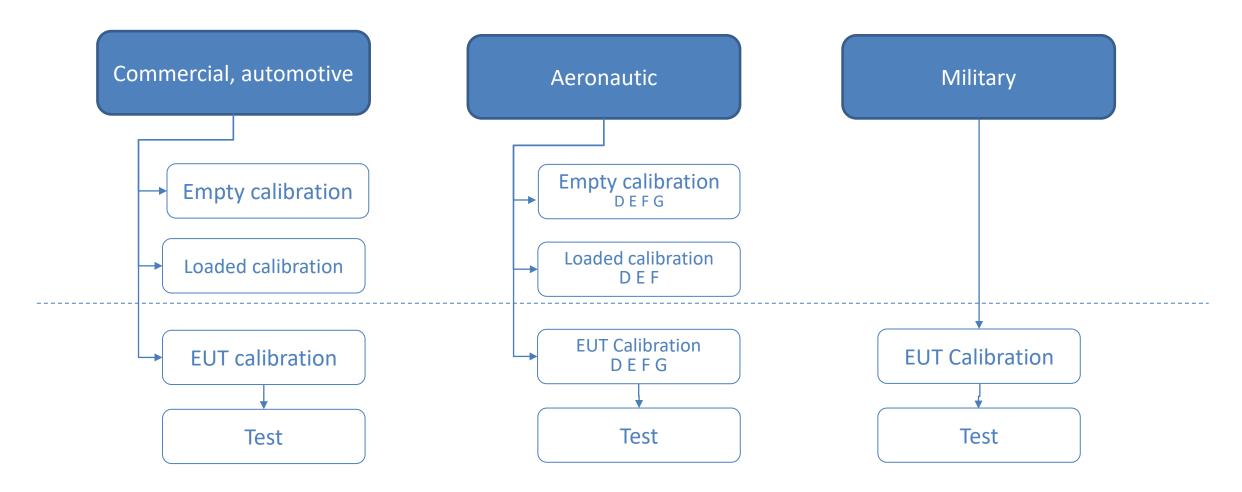
EUT in the uniform field zone:

- Size of the chamber vs start frequency
- Bigger amplifier with a bigger chamber

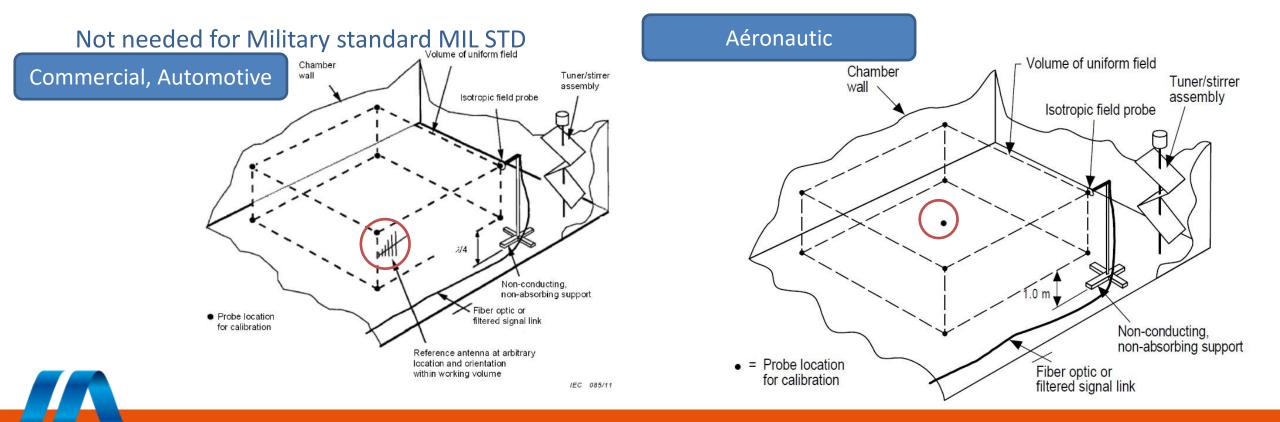

Calibration:

Depending on standard, empty and loaded calibration could takes time.
Calibration on EUT is highly recommended before starting the test

3. Introduction to reverb standard



3. Introduction on reverb standard



4.1 Empty calibration2 goals reach by 2 measurement type:

1. <u>E Field Measurement</u>: Check the Volume of the uniform field area and the first frequency usage of the chamber

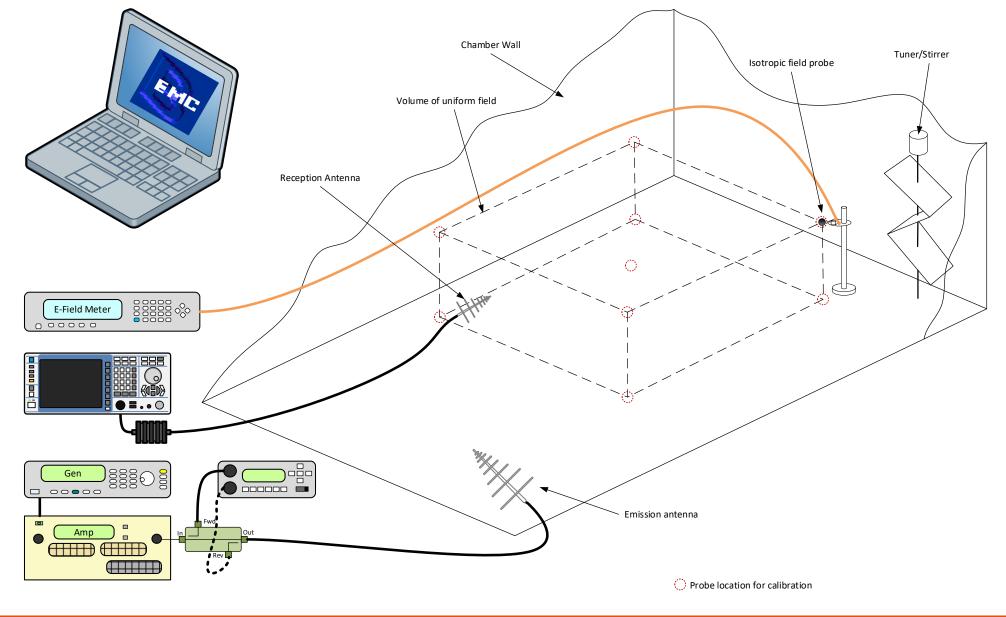
2. Power received on the received antenna: Measurement of the ratio Field/Power empty chamber

A 3rd measurement is performed the Forward Power (and optional Reverse, to have P_{Net})

4.1 Empty calibration, Measurement types :

Value to measure:

- E field:
 - Ex
 - Еу
 - Ez
- Received power in the chamber from the received antenna
- Forward power and Reverse power (optional)


These values should be measure :

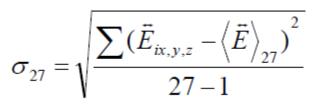
- For each frequency
- For each angular step (stirrer step)
- For each position of the field probe/antenna (location on the perimeter of the chamber working volume)

4.1 Empty calibration, working schema :

4.1 Needed mathematic tools

3 mathematic tools are needed:

- Function maximum
- Function average
- Function Standard Deviation:
 - The standard deviation will describe the variation around the average
 - For example :
 - Average (9 ; 11) = average (0 ; 20) = 10
 - $\sigma(9,11)$ is low
 - σ(0,20) is high


4.1 E Field measurement

For each position of the field probe $E_{Maxx,y,z}$ $\vec{E}_{x,y,z}$ 0° 10° 20° Angular step $E_{Maxx,y,z}$ F_1 $E_{MaxTotal}$ ${ec E}_{\scriptscriptstyle Total}$ F_2 Input-empty F_3 F₄ F_N <u>For each position</u> $\langle \vec{E}_x \rangle_9 = (\sum \vec{E}_x)/9$ of the probe $\left\langle \vec{E}_{y} \right\rangle_{9} = \left(\sum \vec{E}_{y} \right) / 9$ Frequency $\left\langle \vec{E} \right\rangle_{27} = \left(\sum \vec{E}_{x,y,z} \right) / 27 \qquad \left\langle \vec{E}_{z} \right\rangle_{9} = \left(\sum \vec{E}_{z} \right) / 9$

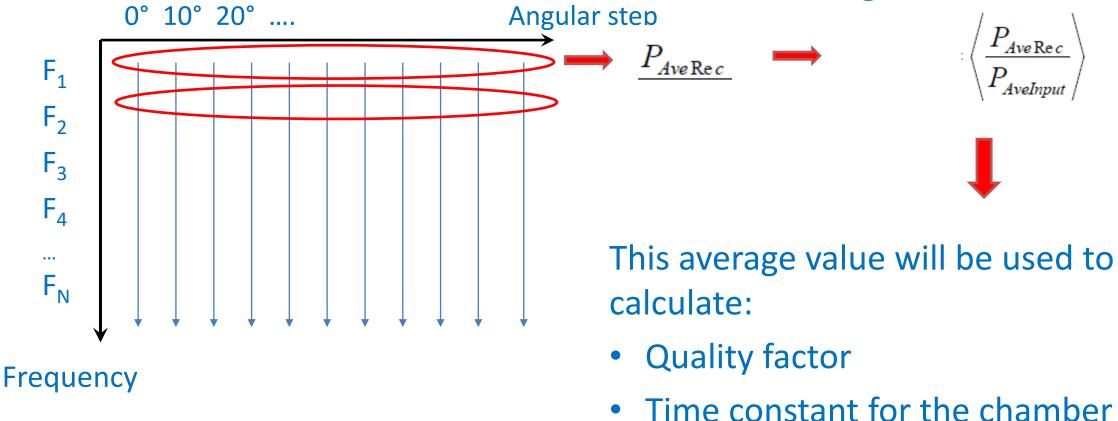
Standard deviation from each probe axis

Standard deviation for all probe axis

Standard deviation in dB $\sigma(dB) = 20 * \log \left(\frac{\sigma + \langle E \rangle}{\langle \vec{E} \rangle} \right)$

the standard deviation of the individual field components (e.g. $\sigma x, y, z$) should not exceed the standard deviation limit.

The standard deviation symbolize the possible deviation of the E Field, Maximum on one complete rotation, with the different positions of the probe, for the different position. 15



 $\sigma_x = 1.06 * \sqrt{\frac{\sum (\vec{E}_{ix} - \langle \vec{E}_x \rangle_9)^2}{Q - 1}}$

4.1 Measurement of Power received in the chamber

For each position of the antenna

Average of received Power

The power to generate for the test (depending on standard) ¹⁶ 4.1 Measurement of Power received in the chamber

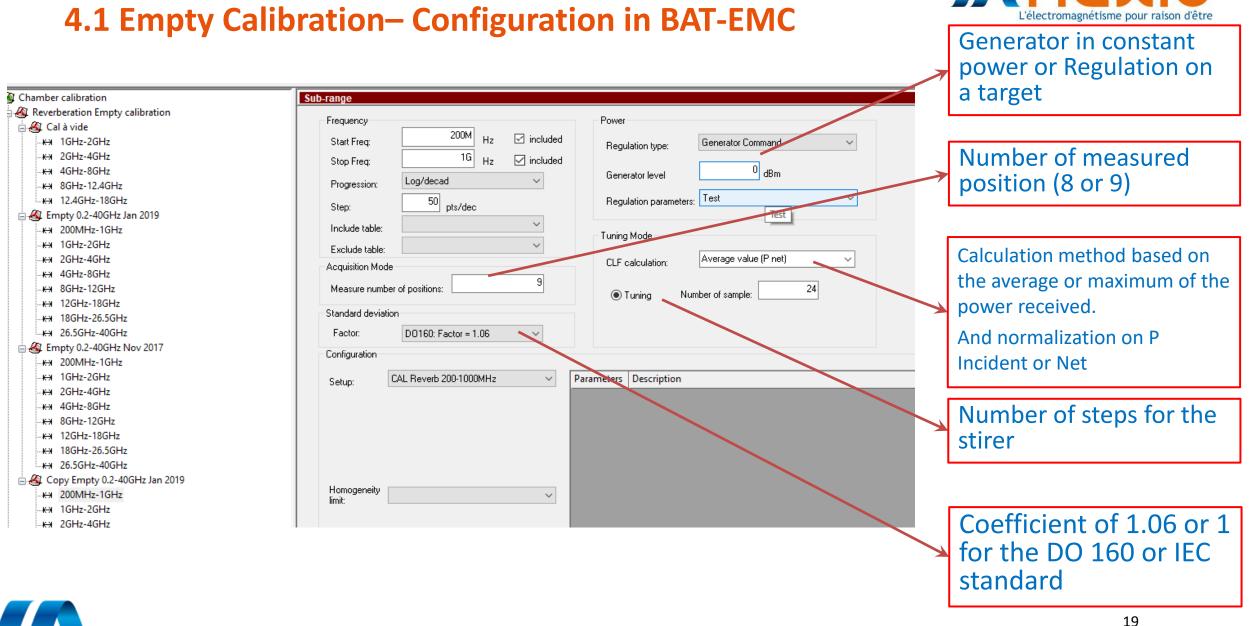
Average of the received power

$$\left< \frac{P_{Ave\,\mathrm{Re}\,c}}{P_{AveInput}} \right>$$

Warning the same calculation is named differently according to standard and revision:

- 61000-4-21 : AVF (Antenna Validation Factor)
- DO 160 F : ACF_{empty} (Antenna Calibration Factor)
- DO 160 G : CCF (Chamber Calibration Factor)
- MIL STD 461 : different method (next slide)

Warning in the DO 160 G, the CCF is the average power for the empty calibration (as written above), But in version F the CCF is the average power for the calibration on EUT

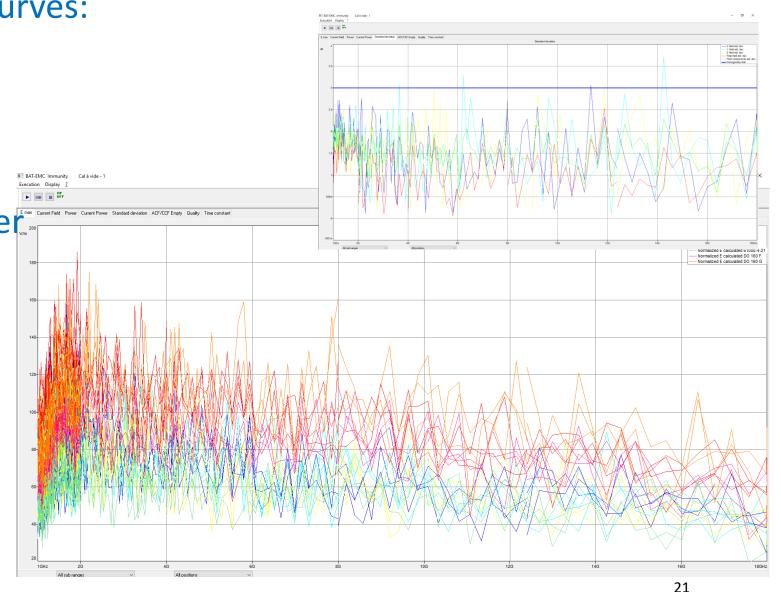


4.1 Reverberant Resources in BAT-EMC

BAT-EMC allows you to defined the information from the standard:

- Chambre volume
- The antenna efficiency factors for the transmit and receive antenna (used for Quality factor and time constant)
- The homogeneity limit

4.1 Empty Calibration – Before the measurement


Montage: Reverb Virtual setup FWD OK Annuler N° Sous-bande Etat Mesure de E Etat 100MHz - 300MHz Non commencée 400MHz - 1GHz Non commencée Position n°1 Non commencée Position n°2 Non commencée Position n°3 Non commencée Position n°4 Non commencée Position n°5 Non commencée Position n°6 Non commencée Position n°7 Non commencée Position n°7 Non commencée Position n°8 Non commencée Position n°8 Non commencée Position n°8 Non commencée Position n°8 Non commencée Position		🔳 Saisie du	i montage d'essai				_			
N° Sous-bande Etat Mesure de E Etat Mesure de P Etat 1 100MHz · 300MHz Non commencée Position n°1 Non commencée Position n°1 Non commencée 2 400MHz · 1GHz Non commencée Position n°1 Non commencée Position n°2 Non commencée 3 1GHz · 18GHz Non commencée Position n°3 Non commencée Position n°3 Non commencée Position n°4 Non commencée Position n°5 Non commencée Position n°4 Non commencée Position n°5 Non commencée Position n°5 Non commencée Position n°5 Non commencée Position n°6 Non commencée Position n°5 Non commencée Position n°5 Non commencée Position n°6 Non commencée Position n°6 Non commencée Position n°5 Non commencée Position n°6 Non commencée Position n°6 Non commencée Position n°6 Non commencée Position n°7 Non commencée Position n°7 Non commencée Position n°6 Non commencée		Montage:	Reverb Virtual setup FWD		~	OK	Annuler			
1 100MHz - 300MHz Non commencée 2 400MHz - 1GHz Non commencée 3 1GHz - 18GHz Non commencée 9 Position n*1 Non commencée 9 Position n*2 Non commencée 9 Position n*3 Non commencée 9 Position n*4 Non commencée 9 Position n*5 Non commencée 9 Position n*5 Non commencée 9 Position n*5 Non commencée 9 Position n*6 Non commencée 9 Position n*6 Non commencée 9 Position n*7 Non commencée 9 Position n*7 Non commencée 9 Position n*7 Non commencée										\times
2 400MHz · 1GHz Non commencée Position n°2 Non commencée Position n°2 Non commencée Position n°3 Non commencée Position n°4 Non commencée Position n°5 Non commencée Po	N° Sous-	-bande	Etat	Mesure de E	Etat	^	Mesure de P	Etat		^
	2 400M 3 1GHz	1Hz - 1GHz	Non commencée Non commencée	Position n°2 Position n°3 Position n°4 Position n°5 Position n°6 Position n°7	Non commencée Non commencée Non commencée Non commencée Non commencée	*	Position n°2 Position n°3 Position n°4 Position n°5 Position n°6 Position n°7	Non commer Non commer Non commer Non commer Non commer	ncée ncée ncée ncée ncée ncée	*
		VIRTUAL S Annexe VIRTUEL B		ible Nul2/Null \vee Bi-con	ic/log/Re 🗸					

4.1 Empty Calibration

At runtime we display the curves:

- field
- power
- standard deviation
- Normalized average power
- Quality coefficient
- Response time

4.1 Empty Calibration : export of the results

resse	e-papiers Isi		Police	1 ki		Align	ement		18	Nombre	N	Styles			Cellules		Editio	an
A1	-	: ×	$\checkmark f_X$	Freq(MHz)														
4	А	В	С	D	E	F	G	н	1	J	К	L	м	N	0	Р	Q	
		Angle (°)	Ex (V/m)	Ey (V/m)	Ez (V/m)	Et (V/m)	P Gen(W)	P Fwd(W)	P Ref(W)	Date		P Rec(W)	P Rec(dBm)	P Gen(W)	P Fwd(W)	P Ref(W)	Date	
S	5R1															B	arre de formule	
F	Position1															_		
	2000		0 50			82.0532	0.00004245	1.01111		10/05/2012 16:09		0.00444868	6.48231167	0.00004245			10/05/2012 16:09	
	2047		0 75.9							10/05/2012 16:0		0.0224754	13.5170743	0.00003637			10/05/2012 16:09	
	2095.1		0 25.25	5 61.7	26.28	71.6595	0.00003637	1.03327	-1E+10	10/05/2012 16:09	Э	0.0213938	13.3028793	0.00003637	1.03327	-1E+10	10/05/2012 16:09	
•	2144.34		0 50.1	L 52	8.73	72.7339	0.00002889	1.02081		10/05/2012 16:09		0.00507104	7.05097036	0.00002889	1.02081		10/05/2012 16:09	
	2194.73		0 5.99	33.1	56.4	65.6692	0.00002889	0.980587	-1E+10	10/05/2012 16:09	Э	0.0145674	11.6338205	0.00002889	0.980587	-1E+10	10/05/2012 16:09	
•	2246.31		0 25.99	9 63.7	25.4	73.3371	0.00002134	1.0294	-1E+10	10/05/2012 16:09	Э	0.0224785	13.5176733	0.00002134	1.0294	-1E+10	10/05/2012 16:09	
)	2299.1		0 49.7	7 27.92	29.19	64.0443	0.00002296	0.983875	-1E+10	10/05/2012 16:09	Ð	0.00214941	3.32319265	0.00002296	0.983875	-1E+10	10/05/2012 16:09	
1	2353.12		0 38.7			112.014	0.00002296	1.01407	-1E+10	10/05/2012 16:09	Э	0.023559	13.7215685	0.00002296	1.01407	-1E+10	10/05/2012 16:09	
2	2408.42		0 42.5	5 37.4	22.72	61.0017	0.00001811	1.02221		10/05/2012 16:09		0.00228514	3.58912812	0.00001811	1.02221		10/05/2012 16:09	
3	2465.02		0 45.5	5 27.51	61.5	81.2976	0.00001811	0.972958	-1E+10	10/05/2012 16:09	Э	0.00168904	2.27639935	0.00001811	0.972958	-1E+10	10/05/2012 16:09	
4	2522.95		0 48.5	5 45.8	34	74.8725	0.00001811	0.967383	-1E+10	10/05/2012 16:09	Э	0.00169433	2.28998001	0.00001811	0.967383	-1E+10	10/05/2012 16:09	
5	2582.24		0 59.8	3 31.1	60.5	90.5732	0.00001612	1.00615	-1E+10	10/05/2012 16:09	Э	0.0138774	11.4230811	0.00001612	1.00615	-1E+10	10/05/2012 16:09	
6	2642.92		0 53.5	5 62.8	10.89	83.2147	0.00001612	1.03364	-1E+10	10/05/2012 16:09	Э	0.00095411	-0.20402463	0.00001612	1.03364	-1E+10	10/05/2012 16:09	
7	2705.03		0 12.99	34.8	6.3	37.6759	0.00001517	1.01482	-1E+10	10/05/2012 16:09	Э	0.00070406	-1.52389712	0.00001517	1.01482	-1E+10	10/05/2012 16:09	
8	2768.6		0 23.88	3 53.4	30.3	65.878	0.00001378	1.02085	-1E+10	10/05/2012 16:10	0	0.00376915	5.76243421	0.00001378	1.02085	-1E+10	10/05/2012 16:10	,
9	2833.66		0 71.6	5 85.4	11.15	112	0.00001566	0.973035	-1E+10	10/05/2012 16:10	0	0.00564544	7.51697796	0.00001566	0.973035	-1E+10	10/05/2012 16:10	1
0	2900.25		0 41.4	1 51.3	47.2	81.0771	0.00001511	1.028	-1E+10	10/05/2012 16:10	0	0.00223057	3.48415857	0.00001511	1.028	-1E+10	10/05/2012 16:10	1
1	2968.41		0 36.2	2 33.2	38.4	62.3477	0.0000148	1.0098	-1E+10	10/05/2012 16:10	0	0.00038195	-4.1799576	0.0000148	1.0098	-1E+10	10/05/2012 16:10	,
2	3038.16		0 37.9	9 44.1	21.88	62.1285	0.0000142	1.02671	-1E+10	10/05/2012 16:10	0	0.0131991	11.2054432	0.0000142	1.02671	-1E+10	10/05/2012 16:10	,
3	3109.56		0 33	3 14.92	27.98	45.7656	0.00001947	0.977025	-1E+10	10/05/2012 16:10)	0.012396	10.9328157	0.00001947	0.977025	-1E+10	10/05/2012 16:10	,
4	3182.64		0 52.7	7 35	34.9	72.2516	0.00001803	1.01504	-1E+10	10/05/2012 16:10	0	0.00118107	0.72275638	0.00001803	1.01504	-1E+10	10/05/2012 16:10	1
5	3257.43		0 83.5	5 25.37	41.4	96.5911	0.00002154	0.966685	-1E+10	10/05/2012 16:10	0	0.00667953	8.24745905	0.00002154	0.966685	-1E+10	10/05/2012 16:10	,
6	3333.98		0 56.4	4 88.6	33.3	110.181	0.00002538	0.970022	-1E+10	10/05/2012 16:10)	0.00461231	6.63918489	0.00002538	0.970022	-1E+10	10/05/2012 16:10	,
7	3412.33		0 77.6	5 115	77.1	158.717	0.00002538	1.01308	-1E+10	10/05/2012 16:10	0	0.00200002	3.01034339	0.00002538	1.01308	-1E+10	10/05/2012 16:10	1
8	3492.52		0 69.8	62.3	40.6	101.989	0.00002678	0.967819	-1E+10	10/05/2012 16:10	0	0.0167301	12.2349854	0.00002678	0.967819	-1E+10	10/05/2012 16:10	,
9	3574.59		0 15.28	3 17.72	40.6	46.8598	0.00002955	0.975993	-1E+10	10/05/2012 16:10	0	0.00172447	2.36655644	0.00002955	0.975993	-1E+10	10/05/2012 16:10	,
0	3658.59		0 10.35	5 42	28.82	51.978	0.00003853	0.989861	-1E+10	10/05/2012 16:10	0	0.0008162	-0.88200749	0.00003853	0.989861	-1E+10	10/05/2012 16:10	
1	3744.57		0 29.4	47.5	13.84	57.5513	0.00004756	0.978255	-1E+10	10/05/2012 16:10	0	0.00218632	3.39713728	0.00004756	0.978255	-1E+10	10/05/2012 16:10	,
2	3832.57		0 39.9	9 40.2	8.35	57.2518	0.00005752	0.973622	-1E+10	10/05/2012 16:10	0	0.00153076	1.84907105	0.00005752	0.973622	-1E+10	10/05/2012 16:10	,
3	3922.63		0 37.4	16.59	35.7	54.2999	0.00007042	0.984738	-1E+10	10/05/2012 16:1:	L	0.00456865	6.59787888	0.00007042	0.984738	-1E+10	10/05/2012 16:11	
4	4000		0 45.4	1 56.9	56	91.841	0.00008224	0.967534	-1E+10	10/05/2012 16:1:	L	0.00297012	4.72773996	0.00008224	0.967534	-1E+10	10/05/2012 16:11	
5	2000	3	0 41.1	17.34	33	55.4877				10/05/2012 16:1:		0.00259556		0.00004409			10/05/2012 16:11	
6	2047	3	0 38.4	1 32.6	17.83	53.4343	0.00003657	1.01205		10/05/2012 16:1:		0.0228933	13.597084	0.00003657	1.01205		10/05/2012 16:11	
7	2095.1	3								10/05/2012 16:1:		0.0046697					10/05/2012 16:11	
8	2144.34	3					0.00002919			10/05/2012 16:1:				0.00002919			10/05/2012 16:11	

In the results export file, you can find:

- All your measurement :E field, Powers, and P_{Fwd} P_{Rev}
- For all frequencies and all angular steps and all positions

0																		
1 2 Freg(MHz)	Avg P Avg (Watt	Avg P Max (Watt	Avg P Avg Norm (ACF)	Avg P Max Norm (II)	ACE (dB)	StdDev x (df	StdDev v (df	StdDev z (dE	tdDev t (dB)	Ft avg Norm	Exvz avg No	Et avg (V/m	Normalized	Normalized	Normalized AntFact	Tr AntFactRe	Quality	Time consta
3 2000			0.00837848		-20,768346				1.6046534				57.8802271				1 19581.2719	
4 2047			0.01153748	0.03183906	-19.37889	0.59656481		0.82419599	1.0013353	111.13958	80,231696		68,4229176				1 28910.1276	
5 2095.1	0.01072226		0.01080397	0.02586961	-19.664167		0.61670155	1.0982805	1.4753009	114.62961	76.023906		63.1252745				1 29025.7279	
6 2144.34			0.0109409	0.03363748					1,9294778		96,911176		73.6731083				1 31515.1709	
7 2194.73			0.01009305	0.0386634	-19.959775	0.68760662			1.4002088	113,85175	85,346946	112,742	80.8415638	103,178269	140.023345		1 31171.0396	
8 2246.31	0.01053045	0.02351097	0.01027432	0.02294264	-19.882471	0.62248698	1,2970478	1,4546253	1.3077815	117,99493	77.622822	119,448	63.7374953	106.547208	110.397881	1	1 34021.0373	0.00000241
9 2299.1	0.00712854	0.02288707	0.0072835	0.02338406	-21.376601	0.10956616	2.1762054	1.9947086	1.7231798	117.92328	81.840286	116.66367				1	1 25858.2438	0.00000179
0 2353.12			0.00855394	0.03427481	-20.678338		0.52296045	1.3158768	0.93709347	112.55655	81.95365	111.99303		101.841096		1	1 32559.9642	
1 2408.42	0.01005639	0.02916917	0.00983346	0.02852037	-20.072938	1.8458452	1.1583459	1.4711016	1.452002	111.63411	72.116296	112.91967	76.1927028	111.758667	131.971187	1	40131.775	0.00000265
2 2465.02	0.00533383	0.01638861	0.0052906	0.01626324	-22.76495	1.3770348	0.36654307	1.2027896	0.94133278	127.23215	80.871644	127.76233	58.8881047	83.9013269	101.998391	1	1 23150.044	0.0000015
3 2522.95	0.00543356	0.01710668	0.00548372	0.01726118	-22.609247	1.7530362	0.53015867	2.4699918	1.9089246	114.25164	84.189186	113.941	62.093686	87.4263222	107.550686	1	1 25726.8596	0.00000162
2582.24	0.00499337	0.01412547	0.00487738	0.01379872	-23.11813	2.5751246	1.6837892	0.799743	2.1113657	117.41393	75.531482	118.793	56.822401	84.389029	98.4204449	1	1 24533.6575	0.0000015
2642.92	0.00620973	0.01637657	0.00613388	0.01617109	-22.122648	2.4374629	1.7906939	1.4307452	1.6471842	114.47586	82.391583	115.30137	62.9589242	96.8606771	109.04934	1	1 33080.5509	0.0000019
2705.03	0.0045413	0.01378057	0.0044421	0.01347672	-23.524116	2.3963032	1.1330853	1.7889969	1.5882932	106.84161	77.779907	107.98087	58.8257937	84.3649713	101.890464	1	1 25685.6244	0.0000015
2768.6	0.00452755	0.01569261	0.00444723	0.01540741	-23.519101	0.95623172	1.8976693	0.14321162	1.1216618	113.22179	74.032232	114.242	64.3766898	86.3974805	111.505011	1	1 27571.2265	0.00000159
8 2833.66	0.00636974	0.01506422	0.0065098	0.01539441	-21.86432	0.6048366	1.4935661	1.9709667	1.2499697	128.55777	86.87318	127.19333	65.8616816	106.986166	114.077123	1	1 43270.9773	0.00000243
9 2900.25	0.00490029	0.01406537	0.00481589	0.01382986	-23.173234	2.3819572	2.2209895	1.728423	1.849811	124.23208	81.470846	125.23167	63.8922228	94.1823724	110.66588	1	1 34321.6693	0.00000188
2968.41	0.00389531	0.01182223	0.00381261	0.01157082	-24.187773	1.2695165	1.8075928	0.62523655	1.2376916	103.5758	69.877772	104.69483	59.8149172	85.7691565	103.603696	1	1 29132.6424	0.00000156
1 3038.16	0.00348639	0.01336963	0.00341534	0.01310625	-24.665666	0.57897043	1.6346645	1.8321648	1.5125339	121.15971	85.695865	122.387	65.1558612	83.0851207	112.854591	1	1 27980.2034	0.00000147
2 3109.56	0.00274143	0.00935608	0.00280243	0.00956728	-25.524652	1.1442663	1.4082866	1.641251	1.2305072	95.901753	69.280692	94.8811	56.9766288	77.0304136	98.6875785	1	1 24615.9792	0.00000126
3 3182.64	0.00283899	0.00893531	0.0027789	0.0087463	-25.561276	2.0440216	2.5086518	1.835739	1.8021276	106.59545	75.804654	107.74337	55.7574893	78.5090288	96.5759419	1	1 26171.0074	0.0000013
4 3257.43	0.00435467	0.01205562	0.00445799	0.0123397	-23.508609	1.9864257	1.5334785	2.150202	1.7451894	134.05087	85.872752	132.48467	67.7846051	101.774862	117.407763	1	1 45014.2331	0.0000022
5 3333.98	0.00211775	0.00513374	0.00217023	0.00526004	-26.634937	0.8170083	1.6855254	2.0542098	1.6560936	106.36376	75.929069	105.0834	45.2961151	72.6795206	78.4560969	1	1 23495.2902	0.00000112
5 3412.33	0.00278826	0.00894924	0.00275284	0.00883495	-25.602195	1.8210105	2.5519406	1.590644	1.7621063	128.74103	79.826093	129.64533	60.0836984	83.7793863	104.069244	1	1 31953.5481	0.0000014
3492.52	0.00277501	0.00906324	0.00283	0.0092488	-25.482137	0.68871896	0.97460671	1.2746252	1.0717045	100.47033	67.004094	99.511567	62.9194859	86.9416618	108.98103	1	1 35219.9302	0.0000016
3574.59	0.00389704	0.00996914	0.00398191	0.01018595	-23.999089	0.31935564	1.3416539	1.2699576	1.1944798	109.60711	75.788663	108.43233	67.5819336	105.5523	117.056722	1	1 53131.9005	0.0000237
9 3658.59	0.0020774	0.00622707	0.0021173	0.00634672	-26.742166	1.8758437	3.0998026	2.1001604	2.174047	113.18129	75.250106	112.08833	54.5999406	78.777348	94.5709852	1	1 30290.7601	0.00000132
0 3744.57	0.00259993	0.00662972	0.00265147	0.00676101	-25.765139	1.6556442	1.1050496	1.4871025	1.2099126	123.47521	82.94528	122.25733	57.6781562	90.2279111	99.9026739	1	1 40670.3093	0.0000173
1 3832.57	0.00176892	0.0055527	0.001807	0.00567328	-27.43043	0.96335947	1.3534195	1.5028874	1.3339854	115.55555	71.523477	114.33133	54.0767976	76.2367759	93.6648643	1	1 29717.5398	0.00000123

 A statistical calculation table is also available with all the calculated values

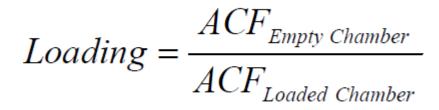
The loaded calibration makes it possible to know whether the isotropy and homogeneity properties are still respected when the chamber is artificially loaded around 12dB. Loaded calibration is **required** in **IEC 61000** and **DO 160F** and earlier standards. Calibration under load is not necessary for the DO160 G and MIL-STD.

4.2 Loaded Calibration measurement method

The loaded calibration is performed in the same way as the empty calibration:

- Field measurement identical to the empty calibration to verify uniformity (same measurement and same calculation)
- Power measurement identical to empty calibration

4.2 Loaded Calibration



 An additional result: the ratio of powers received for empty chamber vs loaded chamber

Loading =	AVF _{Empty Chamber}
	AVFLoaded Chamber

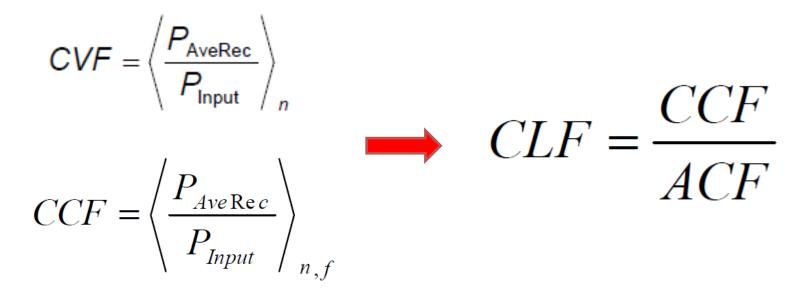
- This load factor represents the maximum load of the chamber while maintaining the uniformity of the volume.
- The load of the EUT must be less than this maximum load.

4.2 Loaded Calibration - BAT-EMC configuration

A Chamber calibration	Sub-range
Reverberation Empty calibration Reverberation Loaded Calibration Loaded 0.2-40GHz Jan 2019 KH 200MHz-1GHz KH 2GHz-2GHz KH 2GHz-4GHz KH 12GHz-18GHz KH 12GHz-18GHz KH 26.5GHz-40GHz KH 26.5GHz-40GHz KH 200MHz-1GHz KH 26.5GHz-40GHz KH 200MHz-1GHz KH 26.5GHz-40GHz KH 200MHz-1GHz KH 200MHz-1GHz KH 200MHz-1GHz KH 200MHz-1GHz KH 200MHz-1GHz KH 26Hz-8GHz	Sub-range Frequency Start Freq: 200M Start Freq: 200M Include Hz Include table: Include table: Exclude table: Include table: Acquisition Mode Include table: Measure number of positions: 12 Standard deviation Include: Factor: D0160: Factor = 1.06
- к э 8GHz-12GHz - кэ 12GHz-18GHz - кэ 18GHz-26.5GHz - кэ 26.5GHz-40GHz	Configuration Setup: CAL Reverb 200-1000MHz Empty Calibration: Empty 0.2-40GHz Nov 2017 Homogeneity limit: limit

Calibration with equipment measures the power ratio or field ratio with the EUT in the chamber.

These measurements will allow to calculate the power required for the test.



4.3 EUT Calibration according to IEC or DO160 F

For IEC and DO 160 F:

- No field measurement
- Measurement of the received power (same calculation method as empty and loaded calibrations)

4.3 EUT Calibration according to DO160 G

For DO 160 G:

- Continuous or step-by-step rotation method
- Calculation of the E_{Max} from the maximum power received over a complete rotation $\sqrt{277*8*\pi^*(P_{max})}$

$$E_{\max} = \sqrt{\frac{377*8*\pi*(P_{rcv\max})}{\lambda^2}}$$

• P_{Fwd} measurement: Max forward power over a complete rotation

4.3 EUT Calibration according to MIL STD

For MIL-STD 461:

- Step by step rotation
- 2 calculation methods:
 - In Field

Calibration factor =
$$\sqrt{\frac{\left(\frac{E_{x-\max} + E_{y-\max} + E_{z-\max}}{3}\right)^2}{P_{forward}}}$$

• <u>In power</u>

Calibration factor =
$$\frac{8\pi}{\lambda} \sqrt{5(\frac{P_{r-\max}}{P_{forward}})}$$

4.3 EUT Calibration - BAT-EMC configuration

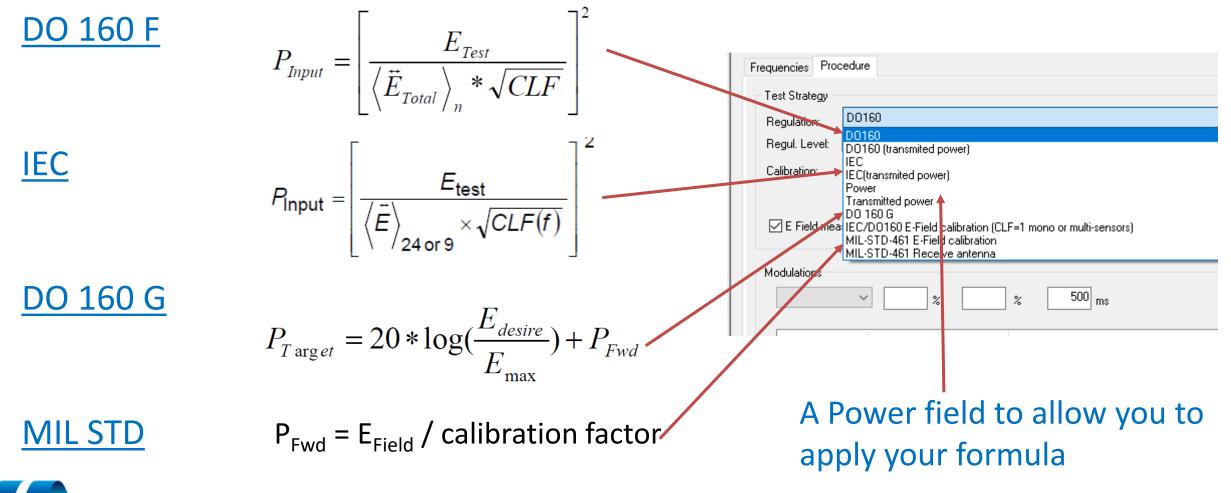
Configuration in BAT-EMC for IEC, DO 160 F, DO160G and MIL STD "power method" calibration

🔏 Chamber calibration	ub-range
Chamber calibration EUT Calibration UEC, DO-160, MIL-STD Receiving antenna method Ki 100MHz-400MHz Valid charge EUT F-field Valid charge EUT Antenna fdgdf Gr Empty Calibration FWD Empty Calibration NET Valid a vide 3.21.0.7 Reverberation Loaded Calibration Calibration Valid en charge 3.21.0.7	ub-range Frequency Star Freq: 100M Hz included Progression: Log/decad Step: 100 pts/dec -20 Include table: - Exclude table: - Acquisition Mode - Measure number of positions: 3 Standard deviation - Factor: D0160: Factor = 1.06 Configuration - Step: Reverb Virtual setup PWD Parameters Description Configuration - Empty Calibration PWD Calibration: Empty Calibration PWD Calibration: Loaded Conded Loaded Calibration

4.3 EUT Calibration - BAT-EMC configuration

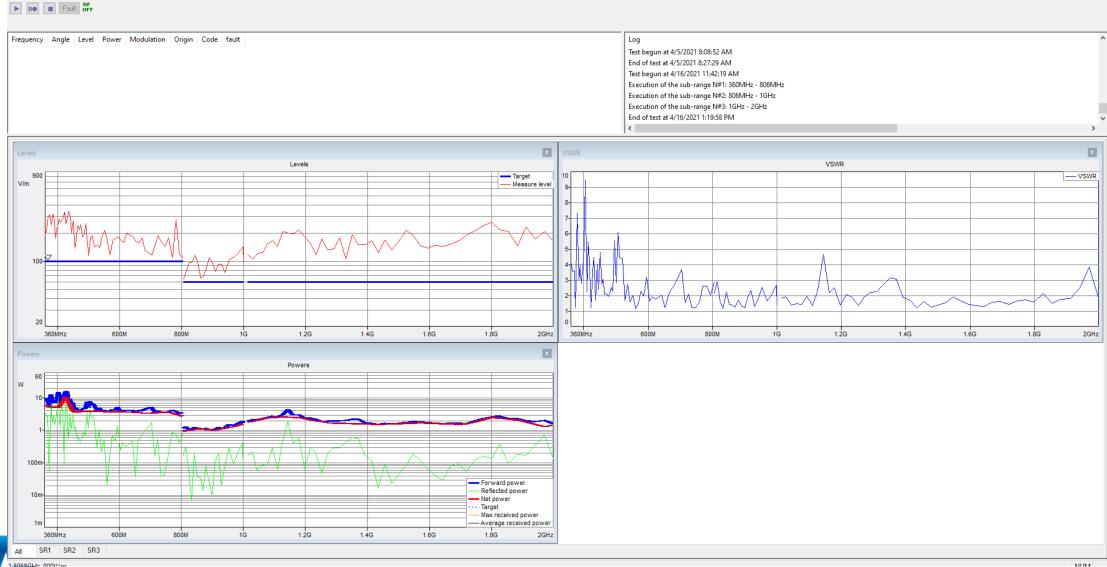
Configuration in BAT-EMC for MIL STD "field method" calibration

 Chamber calibration EUT Calibration EUT Calibration EC, DO-160, MIL-STD Receiving antenna method Valid charge EUT E-field Valid charge EUT Antenna fdgdf cal EUT E field cal EUT E field Reverberation Empty calibration Empty Calibration FWD Empty Calibration NET 	Sub-range Frequency Start Freq.: 100M Hz Stop Freq.: 400M Hz Included Progression: Log/decad Step: 100 pts/dec Include table: Exclude table:	Power Regulation type: Generator Command Generator level Regulation parameters: Calibration Tuning Mode
Empty Calibration FWD A Calibration Events Construct a vide 3.21.0.7 Construct a vide 3.21.0.7 Construct a vide Calibration Construct a vide Calibration Construct a vide 3.21.0.7	Acquisition Mode Number of field probe positions: 3 Configuration Setup: Reverb Virtual setup FWD ✓	Number of samples: 20 Parameters Description


🛞. Project	Sub-range	
	Frequencies Procedure Frequency range Start freq: 400M Hz included Stop freq: 800M Hz included Progression: None ✓	Stirrer : Step by
	- Configuration	step or
	Configuration Setup: Stirrer Mode: Tuning/Stiring Tuning Sample number: 12 Tuning with pause Breaking time: 0 s	Continuous
	O Stirring Rotation 0 s	2 types of sweep:
	Sweep type Sweep for fixed angle Angle sweep for frequency fixed	frequency or
		angular

5. EUT test

The power (Fwd or Net) for a required field is calculated according to the formulas of the different standards:


L'électromagnétisme pour raison d'être

– 🗗 🗙

5.1 Automatic execution

BAT-EMC Immunity Ford Check Reverb 360-2GHz - 3

Execution Display Data Window ?

5.2 Manual Mode

Manual mode		
Frequency:	100MHz	~ Apply
Modulation:	CW	∼ Stop
Angle:	0*	\sim
Generator	Our JOK BF	Automatic mode
A Step:	On / Off OFF	Control Tools Tool(s) activated
Options		Activate Tool
Starting Thres		Threshold search
	Fault	

In manual mode, the operator can modify parameters such as:

- frequency,
- modulation,
- the angle,
- generator level

It is possible to use control tools to monitor the EUT.

5.59

Me 21 10:10: 21 10:12: 21 10:14: 21 10:17: 21 10:19:

0 4/16/2021 10:21:0

0 4/16/2021 10:23:

0 4/16/2021 10:25:

0 4/16/2021 10:27:

0 4/16/2021 10:29:

0 4/16/2021 10:31:

0 4/16/2021 10:33:

0 4/16/2021 10:11: 0 4/16/2021 10:12:

0 4/16/2021 10:14:

0 4/16/2021 10:17:

0 4/16/2021 10:19:

0 4/16/2021 10:21:

0 4/16/2021 10:23:

0 4/16/2021 10:25:

0 4/16/2021 10:27:

0 4/16/2021 10:29:

0 4/16/2021 10:31

0 4/16/2021 10:33:

0 4/16/2021 10:11:

0 4/16/2021 10:12: 0 4/16/2021 10:14:

0 4/16/2021 10:17: 0 4/16/2021 10:19:

0 4/16/2021 10:21: 0 4/16/2021 10:23:

0 4/16/2021 10:25: 0 4/16/2021 10:27:

0 4/16/2021 10:29: 0 4/16/2021 10:31:

0 4/16/2021 10:33:

0 4/16/2021 10:11:

5.3 Report and export of results

As for all tests in BAT-EMC,

Ability to export results to Excel and generate a highly configurable test report

38 Target1CW

434.694

100

156.7 -1.798e+308

								O							EX			
				1 EUT.t 1.1 Re 1.1.1	everberation Immunity Tests Test GM Check Reverb 400 1.1 Global Graph 1.2 Subranges 1.3 Faults	-2GHz				1 1 4 4 4			2-61	4 CheckReverb 40	M M M	V WW	A.	
				PROJEC			REP(4 Apr 21			1892 k 1892 k 1892 k 1893 k 1894 k 1994 k 19	VIDA's VIDA's 6004's VIDA	s anna nanar Anaragis Taga atau	Türə Tübə Təlirə Təlirə Məzərən	91485 11485 178	1100/210/2	
					ACTURER					_		Graph Power (Modulation Nan	Optional)					
$\mathbf{\Lambda}$													2.6	A CheckReverb 40	10-25Hz - CW			
				1 <u>EUT</u> 1.1 Reve	<u>`:</u> test erberation Immunity :	Tests						-54 -54 -54 -54						
				1.1.1 Tes	st GM Check <u>Reverb</u> 4	00-2GHz						2000 2000						
				T	est type Test peration GM Ch	st Name eck Reve 0-2GHz	itt. 16	Executed /04/2021 1				-35.00 -4		1047 MINA 1	45 (1805) (1105)(1505)	108911092 10097		
					Tested by	: Charbo	nneau						-tenenjana - te	Ampany(h) (anan in Targt in Nasia	nation) passes 🚥 due agreementad	2017		
					Test Informatio							Graph VSWR (Modulation Nan	ne: CW	CheckBourd 40	0.204 - 04			
				Test descripti		Reverb Radia	ted Immunity											
				1.1.1.1 G	lobal Graph													
A1 *	: × ~	f _x S		Graph Level Modulation N	l (Optional) Name: CW													
A A I STEP	B Frequency (I An	C gle (~) 1										24						
2 Target1CW 3 Target1CW	400	0 30												~		_	~~~	
4 Target1CW	400	60										anary states tone	ny tabany poblanyahinany inter	na antonana Mitonana Internanting(Ing - Weak	10000 11000 1200018	ay 11ay 141ay 1	80-2 20-2	
5 Target1CW 6 Target1CW	400 400	90 120													-	- 1		
7 Target1CW 8 Target1CW	400 400	150 180	100 100	0	156.3 -1.798e+308 148.3 -1.798e+308	100.7 100.8	0.06132	5.036 5.036	13.56 8.945	8.453 3.826	-14.6 -15.8		8.5	0	0	0	0	0
9 Target1CW	400	210	100	0	166.6 -1.798e+308	100.3	0.1981	5.036	8.814	3.543	-15.7		4.47	0	0	0	0	0
10 Target1CW	400 400	240	100	0	85.2 -1.798e+308	100.2	0.01635	5.036	8.791	3.736	-15.7		4.75	0	0	0	0	0
11 Target1CW 12 Target1CW	400	270 300	100	0	338.5 -1.798e+308 243.6 -1.798e+308	100.1	0.01028	5.036 5.036	6.427 7.638	1.38 2.597	-15.6		2.73	0	0	0	0	0
13 Target1CW	400	330	100	0	337.1 -1.798e+308	101.7	0.1483	5.036	5.707	0.496	-16.7		1.84	0	0	0	0	0
14 Target1CW	411.246 411.246	0	100 100	0	171.8 -1.798e+308 111 -1.798e+308	100.6 101.4	0.05148 0.1183	4.664 4.664	5.448 5.993	0.7286	-18.23 -17.23		2.15	0	0	0	0	0
15 Target1CW 16 Target1CW	411.246	60	100	0	211.3 -1.798e+308	101.4	0.1051	4.664	4.988	1.2 0.2096	-17.53		1.52	0	0	0	0	0
17 Target1CW	411.246	90	100	0	102.6 -1.798e+308	100.6	0.05445	4.664	4.765	0.04166	-17.53		1.21	0	0	0	0	0
18 Target1CW 19 Target1CW	411.246	120 150	100 100	0	91.28 -1.798e+308 298.9 -1.798e+308	101.2	0.106	4.664 4.664	11 7.142	6.225 2.406	-14.33		7 07	0	0	0	0	0
20 Target1CW	411.246	150	100	0	150.9 -1.798e+308	100.8	0.1601	4.664	5.943	2.406	-10.33					0	0	0
21 Target1CW	411.246	210	100	0	144.8 -1.798e+308	102.1	0.1796	4.664	7.07	2.209	-15.83					0	0	0
22 Target1CW	411.246	240	100	0	201.5 -1.798e+308	102	0.1694	4.664	10.35	5.496	-14.83					0	0	0
23 Target1CW 24 Target1CW	411.246 411.246	270 300	100 100	0	317.8 -1.798e+308 155.7 -1.798e+308	101.8 102.1	0.1564 0.1835	4.664 4.664	10.32 7.637	5.482 2.771	-14.43 -15.83				-	0	0	0
25 Target1CW	411.246	330	100	0	104.3 -1.798e+308	100.1	0.01248	4.664	4.849	0.1718	-17.03					0	0	0
26 Target1CW	422.807	0	100	0	142.8 -1.798e+308	100.8	0.0672	4.324	6.109	1.718	-17.58					0	0	0
27 Target1CW 28 Target1CW	422.807 422.807	30 60	100 100	0	183.9 -1.798e+308 190.5 -1.798e+308	100.9 101.2	0.07657 0.1045	4.324 4.324	5.038 5.192	0.6378	-17.58				-	0	0	0
28 Target1CW 29 Target1CW	422.807	90	100	0	96.91 -1.798e+308	101.2	0.1045	4.324	5.192	2.998	-17.18 -15.68					0	0	0
30 Target1CW	422.807	120	100	0	215.8 -1.798e+308	105.4	0.4566	4.324	7.218	2.415	-15.68					0	0	0
31 Target1CW	422.807	150	100	0	360.4 -1.798e+308	101.8	0.1592	4.324	6.444	1.959	-15.98					0	0	0
32 Target1CW 33 Target1CW	422.807 422.807	180 210	100 100	0	139.7 -1.798e+308 154.8 -1.798e+308	101.7	0.1476	4.324 4.324	8.623 5.894	4.15	-14.88 -16.08				_	0	0	0
33 Target1CW 34 Target1CW	422.807 422.807	210	100	0	154.8 -1.798e+308 111.1 -1.798e+308	101.7	0.1457	4.324	5.894	1.423	-16.08					0	0	0
35 Target1CW	422.807	270	100	0	169 -1.798e+308	101.5	0.1329	4.324	5.85	1.392	-16.08		6.74	v	J	o	0	ő
36 Target1CW	422.807	300	100	0	173.4 -1.798e+308	101.5	0.1335	4.324	6.088	1.629	-15.88		3.14	0	0	0	0	0
37 Target1CW	422.807	330	100	0	136.6 -1.798e+308	101.5	0.1309	4.324	4.917	0.4616	-16.58		1.88	0	0	0	0	0

4.339

8.572

100.8 0.07297

4.159

-17.05

Thank you for your time

https://www.nexiogroup.con

00 ?)

https://yournexio.com

sales@nexiogroup.com

🕥 Incidents NEXIO Support 🛛 🗙	÷														- ø ×
ightarrow $ ightarrow$ $ ightarrow$ nexioprod.ser	vice-nov	w.com/r	nav_to.do?uri=%2	Fincident_list.do%3Fs	ysparm_query%3Dactive%3Dt	rue%5EEQ%26sysp	parm_userpref_mo	dule%3D4fed4395	c0a8016400fcf06c27b	1e6c6%26sysparr	n_clear_stack%3Df	true	(ચ 🖈 🕛 🐰	0 0 :
													۹	Olivier ROFFE 🔻	ፍ 🗗 🕜 🏟
7 Filter navigator	= In	cidents	New Search C	reated • Sear	ch								$\sqrt{-}$	1 to	98 of 98 🕨 🕨
🖻 🔶 🕔	<u>ې</u>	All > Active	e = true												
Home	¢۵	Q	■ Number	≡ Caller	■ Company	■ Category	Priority	Ticket status	■ Assignment group	Assigned to	■ Location	E Created V	≡ Closed	Resolved by	
Centre de services - Incidents			Search	Search	Search	Search	Search	Search	Search	Search	Search	Search	Search	Search	Search
Centre de services - Mes tâches			Search column: sho	ert description											
Centre de services - Customer c		()	INC0014027 RS232 tool crashes B	Peter SEIDLER AT-EMC	NEXIO Technologies	Need Information	Not blocking	New	12 support Test&Mes	(empty)	<u>Abstatt</u>	23/04/2020 12:25:54	(empty)	(empty)	23/04/2020 12:38:38
Centre de services - Appelants Tâches		(i)	INC0014026 Add a warning messa	Sébastien MARTINEAU	<u>NEXIO Technologies</u> I have not the correct sweep time	Driver	Not blocking	New	1.3 support Test&Mes	(empty)	Toulouse	23/04/2020 09:50:58	(empty)	(empty)	23/04/2020 09:54:02
Self Service - Mes tableaux de tâ		(i)	INC0014025	Wilson XIAO	EMC Technologies Pty Ltd	Service Degradation	 Blocking 	Assigned	L2 support Test&Mes	Simon FROIDEFOND	Victoria	23/04/2020 05:45:30	(empty)	(empty)	23/04/2020 13:45:36
Ressources et configuration - Li Knowledge - Homepage		i	Advance finals Script INC0014024 The emission measure	Akinori TOGAWA rement result cannot be ou	BOSCH Auto Japan tput to the report.	Report Template	 Blocking 	Assigned	L2 support Test&Mes	Simon FROIDEFOND	<u>Yokohama</u>	23/04/2020 03:34:55	(empty)	(empty)	23/04/2020 15:01:51
Demo License		(i)	INC0014023 Radar Pulse on NRX I	Jason KANAKRY lot measured correctly in B	<u>Bureau Veritas MI</u> IAT EMC		 Blocking 	Assigned	L1 support Test&Mes	Greg GARZA	Auburn Hills	22/04/2020 23:03:56	(empty)	(empty)	23/04/2020 15:04:01
		(i)	INC0014022 power meter uncorre	<u>Giorgio ROMANO</u> ct measure	TESLAB	Service Degradation	Not blocking	Assigned	12 support Test&Mes	Simon FROIDEFOND	Livorno	22/04/2020 15:40:05	(empty)	(empty)	23/04/2020 15:04:52
		(i)	INC0014021 Use Power meter as A	Alessandro GUIDA	TESLAB	Need Information	Not blocking	Assigned	L2 support Test&Mes	Simon FROIDEFOND	Livorno	22/04/2020 14:29:52	(empty)	(empty)	23/04/2020 14:46:49
		(i)	INC0014020 BCI en Boucle ouvert	<u>Beniamin GOUY</u> e problème sur la mesure, j	VALEO 94 j'ai pas le même niveau entre ma mesu	Service Degradation Ire CW et AM, quelque s		Assigned A de diff)	L2 support Test&Mes	Simon FROIDEFOND	<u>Creteil</u>	22/04/2020 12:39:01	(empty)	(empty)	23/04/2020 11:18:59
		(i)	INC0014019 About RCS caluclate	<u>Naoki YOSHIKAWA</u> nethods	Mitsubishi Heavy Industries, Ltd.	Need Information	Not blocking	New	L2 support Simu	(empty)	Nagoya	22/04/2020 09:32:23	(empty)	(empty)	22/04/2020 10:08:27
		(i)	INC0014018 regulation level and r	Norbert SCHMID egulation parameter entrie	NEXIO Technologies es disappear	Need Information	Not blocking	Assigned	L2 support Test&Mes	Sébastien MARTINEAU	Radolfzell am Bodensee	21/04/2020 16:54:31	(empty)	(empty)	22/04/2020 09:53:44
		(i)	INC0014015 empty lines within fil	<u>Niels BERGER</u> l area	SMA Solar Technology AG	Report Template	Not blocking	Assigned	L3 support Test&Mes	Arnaud AMOROS	Niestetal	21/04/2020 12:46:58	(empty)	(empty)	23/04/2020 16:38:12
) /		i	INC0014014	Sezer AKGÜL	TURKISH AEROSPACE	Driver	Not blocking	Customer Action Needed	L1 support Test&Mes	Solange DELBECQUE	Ankara	21/04/2020 09:40:15	(empty)	(empty)	23/04/2020 13:39:44

